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Wildlife habitats are areas of land that provide resources such as food, cover, and
water and environmental conditions such as precipitation and soil types that
affect occupancy of individuals or populations of species, allowing those species
to survive and reproduce (Morrison et al. 2006). Changing requirements in the
1970s to evaluate and report the effects of land management activities on wildlife
habitats and associated populations led to a need for new analysis techniques.
Wildlife habitat-relationships models were first developed in the mid-1970s
(Salwasser et al. 1980) to provide practitioners with tools to evaluate habitat qual-
ity for selected species. The underlying goal of many habitat-relationships model-
ing frameworks is to evaluate habitat quality for wildlife populations. Habitat
quality was described by Hall et al. (1997:178) as “the ability of the environment
to provide conditions appropriate for individual and population persistence.”

Habitat capability models provide an estimate of the area within which
resources for a modeled species can be found, or ranking an area based on the
capability of that area to support a species based on a few important environmen-
tal variables (Morrison et al. 2006:337). Habitat effectiveness models rank
resources in an area to the degree that maximum use or carrying capacity can
be met (Morrison et al. 2006:337), with effectiveness often tempered to reflect
the constraints of human activities on the area actually usable by animals (Lyon
and Christensen 1992, Merrill et al. 1999). Throughout our chapter, we generally
refer to habitat-relationships modeling frameworks, while recognizing that frame-
works have been developed under a variety of structures including species-habitat
matrices, habitat suitability, habitat capability, and habitat effectiveness (Morrison
et al. 2006). We define frameworks as conceptual modeling structures including
modeling shells (e.g., expert systems) and general modeling approaches (e.g., arti-
ficial neural networks, Bayesian belief networks, spatial optimization) within
which models are constructed that are similar in purpose and function.
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Two general approaches have been developed to assess habitat quality for
wildlife populations. Under species-habitat matrix frameworks, the starting point
is a classification of vegetation within which each classification unit is assigned a
value describing its value as habitat for one or more wildlife species (Morrison
et al. 2006). Frameworks that use guilds often are structured as a species-habitat
matrix, because guilds represent aggregates of species needs typically including
generalizations of habitat needs. Work by Thomas (1979) in the Blue Mountains
of northeastern Oregon and southeastern Washington, Hoover and Willis (1984)
in Colorado forests, and DeGraaf et al. (1992) in New England forests are exam-
ples of species-habitat matrix modeling frameworks. The second approach to
modeling wildlife habitat quality includes frameworks that begin with the habitat
requirements of a species and then quantifics these requirements through spe-
cific vegetation and other variables to evaluate how an area provides the various
required requirements. The Habitat Evaluation Procedures (HEPs) developed by
the U.S. Fish and Wildlife Service (1981) established the underpinnings for this
approach from which many other modeling frameworks have been developed.

Habitat-relationships modeling frameworks have increased in number and
complexity since the mid-1970s. Consequently, selecting a modeling framework
to match the objectives of a wildlife conservation program that appropriately
consider data availability and the analytical abilitics of practitioners can be diffi-
cult. The purpose of our review was to describe the structure, uses, outp'm, and
operation of wildlife habitat-relationships modeling frameworks to provid . prac-
titioners with a basis for selecting frameworks. Our specific objectives were to
(1) identify wildlife habitat-relationships modeling frameworks that are currently
available for use; and (2) provide a descriptive analysis of frameworks to assist
practitioners in selecting approaches to modeling wildlife-habitat relationships
that best fit their objectives.

METHODS

Identifying and Rating Habitat-Relationships
Modeling Frameworks

To focus our search for modeling frameworks, we bounded our definition of
wildlife habitat-relationships modeling frameworks with four criteria that were
based on the modeling objectives of ecach framework. We (1) considered frame-
works that were designed to evaluate habitat for terrestrial wildlife species; (2)
considered frameworks that have the potential for multispecies applications,
thus avoiding approaches designed solely for onc species (e.g., Gutiérrez et al.
1992); (3) avoided statistical modeling techniques (e.g., logistic regression, dis-
criminant function analysis, resource selection functions) designed to quantify
selection of habitat by a species, although we considered modeling frameworks
that incorporate statistical or other analytical concepts to describe habitat rela-
tionships (e.g., artificial neural networks, Bayesian belief networks, expert
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systems, fuzzy logic, spatial optimization); and (4) considered only frameworks
that were operational, avoiding those that are currently being conceptualized or
were otherwise incomplete.

In many cases, the recently developed wildlife-habitat relationships frame-
works we identified were improvements of earlier, more general frameworks.
For instance, several newer frameworks including ArcHSI (Juntti and Rumble
20006), HABIT@ (McGarigal and Compton 2003), HCI (McComb et al. 2002),
HQI (Rickel 1997), Landscape HSI (Larson et al. 2003, 2004; Dijak et al. 2007;
Rittenhouse et al. 2007), and LMS (Marzluff et al. 2002; Oliver et al., this vol-
ume) retain elements of the original 1981 HSI framework, but provide more
sophistication through incorporation of advancements such as GIS and spatially
explicit analyses. Consequently, we retained newer frameworks that were built
on the platforms of older frameworks as independent observations because
their advancements allow them to function in different ways than the previously
described frameworks. In other cases, frameworks were stand-alonc, not based
on previously described frameworks. To be consistent, however, in each case
we adhered to the four criteria to identify frameworks according to their
modeling objectives.

After identifying the major habitat-relationships modeling frameworks that fit
the above four criteria, we rated each according to 10 nominal- and 5 ordinal-
scale criteria to quantify our evaluation (Table 10-1). Nominal criteria included
(1) whether the breadth of application of the framework could consider a wide
range of species in a wide range of environments or was limited to certain taxa
or a single environment; (2) whether the frameworks linked habitat conditions
with population demographics or surrogates; (3) whether the frameworks were
included in comprehensive landscape modeling systems; (4) availability of input
data; (5) whether at least one individual species model based on a particular
framework had been validated with field data; (6) capability of frameworks to
examine habitat relationships at single or multiple scales; (7) whether multi-
scaled frameworks required linkage information among scales to function; (8)
whether the frameworks had attained scientific credibility through publication
or application of results suggesting acceptance by an array of professionals;
(9) the spatial application of the framework (i.e., does the framework use geo-
graphic data [spatial framework]?; does the framework examine spatial relation-
ships in habitat data at specific locations or coordinates [spatially explicit]?; or,
does the framework not rely on geographic or spatial data [aspatial])?; and (10)
whether vegetation and its attributes were applied in the framework as the basis
for a species-habitat matrix or as variables to assess habitat relationships for
wildlife species (Table 10-1). Ordinal criteria included (1) whether documenta-
tion was adequate to clearly understand and apply the modeling frameworks;
(2) ease of application; (3) whether output was well defined and measurablc;
(4) whether frameworks were well suited for the scales they were developed
to examine; and (5) transparency of the frameworks’ structure (Table 10-1).
We conducted two independent reviews of each framework and then reached
consensus on criteria ratings that differed.
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Table 10-1 Nominal- and Ordinal-Scale Criteria Used to Rate Wildlife Habitat-Relationships
Modeling Frameworks

Criteria

Definition

Rating Scale

Nominal criteria

Breadth of Can the framework be used to define 0 = only suited for a single species or
application habitat relationships for a wide range of environment
species in a wide range of environments? 1 = suited for a wide range of species in
a wide range of environments
Habitat— Does the modeling framework incorporate 0 = does not rely on population
population vital rates (e.g., production, survival), other demographics or surrogates of
linkage demographic parameters (e.g., density, modeled species
population size); surrogates (e.g., quality of 1 = relies on surrogates for population
home ranges, habitat conditions in critical demographic parameters or framework;
reproductive habitats, presence/absence) can utilize population demographics if
of population demographic parameters; or desired, but is not dependent on them ,
does the modeling framework model 2 = specifically relies on population
habitat conditions without specific demographics of modeled species
consideration of wildlife population
parameters? )
Independence Is the framework part of a larger landscape 0 = a component of a larger Iandscape\‘,
modeling system? modeling system v
1 = stands alone and is not part of a
larger landscape modeling system
Input Is the required input data (e.g., GIS 0 = not readily available

requirements

coverages, stand and wildlife inventory
data) readily available in agency

1 = readily available

inventories?
Model Has output from at least 1 model 0 = no validation known or validation
validation developed within a framework been impossible
validated with field data? 1 = mode! validated
Scale Is the framework limited to 1 scale or can it 1 = limited to 1 scale
application explicitly examine differences in habitat 2 = capable of examining habitat
conditions at a range of spatial scales? conditions at more than 1 scale
(e.g., forest and region)
Scale linkage if the framework is multiscaled, are the 0 = scales are not linked
scales linked? 1 = scales are linked
Scientific Has the framework gained credibility 0 = limited credibility
credibility through publication of results, application 1 = at least 1 publication of results

of results, or other mechanisms to suggest
acceptance by an array of professionals?

using this framework, or other
application of the modeling framework

continues
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Table 10-1 Nominal- and Ordinal-Scale Criteria Used to Rate Wildlife Habitat-Relationships ,
Modeling Frameworks cont...

Criteria Definition Rating Scale
Spatial Does the framework: not rely on 1 = aspatial
application geographic data (aspatial); examine 2 = spatial

geographic data (spatial framework); 3 = spatially explicit

or examine spatial relationships in
habitat data at specific locations or
coordinates as part of its structure
(spatially explicit)?

Vegetation How does the framework apply vegetation 0 = applied as the basis for a wildlife
application and its attributes in modeling? species-habitat matrix
1 = applied as habitat variables to
assess wildlife-habitat relationships

Ordinal criteria

Documentation Is there sufficient documentation (e.g., 0 = limited
a user's manual or website) to clearly 1 = marginal .
understand the modeling framework? 2 = sufficient |
Ease of Is the model difficult to parameterize, 1 = difficult
application run, and understand the output? 2 = moderate
3 = easy
Output Is the output well defined and will it 1 = difficult
definition translate to something that can be 2 = moderate
measured? 3 = easy
Scale definition Is the framework well suited for the scales 0 = not well suited !
it is defined to examine? 1 = moderately well suited
2 = very well suited
Transparency Is the structure of the framework clear (i.e., 1 = difficult
: is the flow of the framework apparent)? 2 = moderate
) 3 = easy

Description of Habitat-Relationships
Modeling Frameworks

To depict trends in development of wildlife habitat-relationships modeling fra-
meworks, we plotted nominal criteria as proportions.across the three decades
encompassing our review (1980s, 1990s, and 2000s), with the final decade cov-
ering 2000-2006. Because California wildlife habitat relationships (Salwasser
et al. 1980), pattern recognition (Williams et al. 1977), and wildlife habitat qual-
ity (Roller 1978) modeling frameworks were developed in the mid- to late-
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1970s, we included these frameworks with those described in the 1980s. We
developed narratives for each framework summarizing the origins of the frame-
work, capabilities of the framework including data inputs and outputs, and
related information (e.g., availability of software).

We conducted cluster analyses -to better understand relationships among
frameworks and to identify frameworks with similar characteristics. We used agglo-
merative  hierarchical cluster methods to identify groupings of habitat-
rclationships modeling frameworks based on dissimilarity distance between each
framework (PROC CLUSTER; SAS Institute 2003). Qur input data for cluster analyses
were the criteria ratings for each framework. Because our ratings consisted of nomi-
nal and ordinal data, we computed Gower’s similarity coefficients (Gower 1971)
between each pair of frameworks. We then computed Gower’s dissimilarity cocffi-
cient (1 - Gower’s similarity coefficient) in PROC DISTANCE (SAS Institute 2003) to
base clustering on heterogeneity within the data ratings between frameworks. We
used the average linkage cluster method, which is an unweighted pair-group method
that uses arithmetic averages of dissimilarity coefficients to compute distance

i between clusters (PROC CLUSTER,; SAS Institute 2003). We used an Rz-type measure
' of total withincluster heterogeneity to evaluate the proportion of variance accounted
for by joining each cluster. When cach framework is in a cluster by itself, R* = 1
because there is no within-cluster variability; as frameworks are grouped into clusters,
. within-cluster variability increases from 0 and R? decreases from 1. We plotted J{
Ii' values for each cluster in a hierarchical tree diagram (PROC TREE; SAS [nstltutc
- 2003) and used a cutoff value of R? = (.60 to define cluster groupings. We computed
Gower’s dissimilarity coefficients within each identified cluster group to evaluate
within-cluster variability and report the mean and range in these coefficients for each
cluster (PROC MEANS; SAS Institute 2003). Because Gower’s dissimilarity coefficients
range from 0 to 1, higher values indicate greater within-cluster heterogencity. Lastly,
we described attributes of each cluster group to better understand common patterns.

RESULTS

Identifying and Rating Habitat-Relationships
Modeling Frameworks

We identified 40 modeling frameworks (Table 10-2); 13 frameworks developed
through the 1980s, 12 frameworks developed in the 1990s, and 15 developed since
2000. Ten (0.25) frameworks exist within a larger landscape assessment system
(ALCES, BOREAL, CompPATS, EMDS, HCI, LEAM, LEEMATH, LMS, SESI, and SIM-
FOR). Although HCI was developed as a component of the Coastal Landscape Anal-
ysis and Modeling System (CLAMS; Spies et al. 2002), it can model wildlife-habitat
relationships outside this system (B. C. McComb, University of Massachusetts,
personal communication, 2006). Eight (0.20) frameworks (Arc-Habcap, BEST, BIRD-
HAB, CompPATS, CWHR, HABSCAPES, PATCH, and SHM) apply vegetation and its
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Table 10-2 Summary of 40 Habitat-Relationships Modeling Frameworks
Framework Description Primary References
A Landscape ALCES quantifies economic contributions of Schneider et al. 2003,

Cumulative Effects
Simulator (ALCES)

land use practices, identifies associated ALCES 2005
environmental and industrial issues, and assists in

development of mitigation strategies. The availability

and quality of habitat for specific wildlife species

is determined by tracking the area and area-

weighted value of different vegetation and

landscape types.

Animal, Landscape
and Man Simulation
System (ALMaSS)

ALMaSS predicts the effect of changing landscape Topping et al. 2003
structure or management on key wildlife species. It

incorporates detailed species-specific life history

information and is agent-based, allowing each

individual to interact with other individuals and the

environment.

Artificial Neural
Network (ANN)

Neural network models are inspired by natural Ozesmi and Ozesmi
physiology and mimic'the neurons and synaptic 1999, Lusk et al. 2002,
connections of the brain. Once trained for a Ozesmi et al. 2006
given task, a network can be applied by

providing suitable data on the network inputs.

Published applications used habitat variables

to model nesting habitat for red-winged

blackbirds, marsh wrens, and northern

bobwhite quail.

Arc-Habcap

Arc-Habcap is a deterministic GIS-based wildlife Benkobi et al. 2004
habitat model-that originated from a spreadsheet-

based habitat capability (Habcap) model. The

model in Benkobi et al. (2004) predicts

effectiveness of forage, cover, and cover-forage

proximity, as weI!' as effects of roads, on elk

distributions. The Arc-Habcap framework can be

used to model habitat for any terrestrial vertebrate

based on association with vegetation structural

stages.

Arc Habitat Suitability
Index (ArcHSI)

ArcHS! is a GIS-based model that estimates Juntti and Rumble 2006
the ability of an area to meet the food and cover

requirements of an animal species. The components

and parameters of the model occur in tables and can

be easily edited or otherwise modified. ArcHSI runs

on personal computers with the full installation of

ArcGIS. Also’ see-ArcView HABCAP (U.S. Forest

Service 2005). '

continues
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Table 10-2 Summary of 40 Habitat-Relationships Modeling Frameworks cont...

Framework

Description

Primary References

Bayesian Belief
Networks (BBN)

BBNs depict probabilistic relatiops among variables
and use Bayesian statistics to calculate probabilities
of outcomes, such as population presence, given
conditions of input variables (e.g., condition of
habitat).

Marcot et al. 2001,
Raphaet et al. 2001,
Marcot 2006

Biodiversity Expert
System Tool (BEST)

BEST uses data from the U.S. Geological Survey's
Gap Analysis Program (GAP) and other data in a GIS
environment. This tool provides predictions of
conflict between proposed land uses and biotic
elements and is intended for use at the start of a
development review process.

Crist et al. 2000

BIRDHAB

BIRDHAB is a wildiife habitat relationships model
developed for national forests in the Southern
Region to assist in assessment of proposed
management actions. It is written as an Arcinfo GIS
program that accesses stand inventory data and a
species-habitat matrix to describe the relative quality
of habitat for 271 species of birds.

U.S. Forest Service
1994, Kilgo et al. 2002

BOREAL

BOREAL is a tactical planning decision support
system that predicts the effects of alternative forest
management strategies on forest product yields,
revenues, and habitat area and distribution. This
framework uses readily available inventory data and
provides tabular, graphical, and map output.

Puttock et al. 1998

Computerized Project
Analysis and Tracking
System (CompPATS)

CompPATS evaluates the effects of forest
management on wildlife habitat, sedimentation,
visual quality, timber yield, and net revenue. Wildlife
values describe habitat capacity, not an estimate of
animal abundance.

Quachita National Forest
1988, Keller et al. 1994

California Wildiife
Habitat Relationships
(CWHR)

CWHR is maintained by the California Department of
Fish and Game. Habitat suitability indices may be
calculated for land use planning assessments using
GIS and fuzzy logic.

Salwasser et al. 1980,
Raphael and Marcot
1986, Block et al. 1994,
California Department of
Fish and Game 2005

Effective Area Model
(EAM)

EAM is an empirically based spatial model

that incorporates patch size and shape, composition of
matrix habitats, and species-specific edge responses
to predict the organization of animat assemblages
occupying heterogeneous landscapes. Specifically, it
predicts the effects of matrix habitats on species
abundances in habitat patches.

Sisk et al. 1997, Brand
et al. 2006

A

continues
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Table 10-2 Summary of 40 Habitat-Relationships Modeling Frameworks  cont...

Framework

Description

Primary References

Ecosystem
Management Decision
Support (EMDS)

EMDS v. 2.0 is an application framework for
knowledge-based decision support of ecological
assessments that is designed for use at any
geographic scale. The system integrates GIS and
knowledge-based reasoning technologies in the
Microsoft Windows® environment.

Reynolds 1999a, b;
Reynolds 2001, Stoms
et al. 2002

Expert Systems

Expert systems are a formalized method of
organizing and applying information and opinion
which utilize quantitative information when available,
but usually rely primarily on expert opinion. Results
may be expressed in terms of conditional states or
probabilities.

Marcot 1986

FORHAB

FORHAB is a deciduous forest stand simulation
model that may be used to predict changes in
available breeding habitat for birds.

Smith et al. 1981

HABIT@

HABIT@ evaluates habitat at multiple, interconnected
scales through indices that represent the quality of
selected variables with numerous options for
summarizing, combining, and/or comparing model
variables (e.g., arithmetic mean, product, geometric
mean, minimum).

McGarigal and Compton
2003

HABSCAPES

HABSCAPES uses spatial databases to map the
predicted occurrence of all terrestrial vertebrate and
aquatic amphibian species relative to landscape
pattern over large geographic areas. Spatial
databases describing the landscape .are linked to
databases containing wildlife habitat relationships
and life history characteristics using custom
FORTRAN programs and PARADOX scripts.

Huff et al. 2001; Mellen
et al. 1995, 2001 i

HABSIM

HABSIM tracks vegetation seral stages, quantifies
the change in vegetation structure and composition
for each seral stage over time, and relates this
information to potential carrying capacity for the
species of interest.

Raedeke and Lehmkuh!
1086

Habitat-Based
Species Viability
(HBSV) Model

With HBSV, areas of high quality habitat for a
species are assumed to support individuals in
smaller home ranges, with higher rates of survival,
and with higher reproductive success. The number
of individual héme ranges of different quality habitat
for an individual species are mapped and quantified
to assess the potential viability of the species.

Roloft and Haufler 1997,
2002

continues
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Table 10-2 Summary of 40 Habitat-Relationships Modeling Frameworks cont...

Framework Description Primary References
Habitat Capability HCI estimates the capability of/a landscape McComb et al. 2002,
Index (HCI) patch and its surrounding neighborhood to provide Spies et al. 2002

conditions important to a species survival and
reproduction. These values are based on vegetation
and physical conditions over a range of scales

on the landscape.

Habitat Effectiveness HE! originated through the development of models to Thomas et al. 1988,
index (HEI) evaluate cumulative effects and is computed as the Merrilf et al. 1999

difference between analogues of death and birth

rates, which yields a measure of habitat suitability.

An index of human activity may be used as

an analogue of death rates. An index of

habitat quality, potentially described by vegetation,

food availability, and abiotic factors is often used as

an analogue of birth rate.

Habitat Quality (HQ) The HQ framework measures habitat interspersion Roy et al. 1995
(Is) and juxtaposition (Jx) through GIS processes Y
and incorporates it with limiting factors (RDF)
that are essential for the species of interest,
The form of the relationship is HQ = (0.2*1s/8) +
(0.6*Jx/12) + (0.2*RDF) resulting in values from

el

0.0to 1.0.
Habitat Quality (HQI) This is a GIS (ArcView) PC application that was Rickel 1997
and Habitat Quality developed to provide information for development
Plus (HQl+) of forest plans (HQI for. single species

analyses; HQI+ for multiple species analyses). 5
An index value from 0.0 to 1.0 is assigried to habitat
patches based on cover type, canopy, tree size,

and season. B
Habitat Suitability HSI indices are a composite (often a geometric U.S. Fish and Wildlife
Index (HSI) mean) of individual suitability index (S) scores Service 1981

reflective of habitat variables that represent

cover types, life requisites, and life stages for
habitats of individual species, each scaled

0 (unsuitable habitat) to 1 (optimum habitat). S
scores range from 0 to 1 and are compuited as a
ratio of a value of interest (i.e., estimate or measure
of habitat conditions) divided by a standard of
comparison (i.e., optimum habitat condition). HS
models assume a linear relationship between the
index value and carrying capacity for the species of
interest.

continues
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Table 10-2 Summary of 40 Habitat-Relationships Modeling Frameworks cont...

Framework

Description

Primary References

Landscape HSI

Landscape HSI applies a 0-1 habitat suitability index
to large landscapes through the use of GIS-based
modeling of raster data (e.g., tree species and age)
across entire landscapes. Landscape HSI has also
incorporated other programming to facilitate
evaluation of spatially explicit landscape attributes
(e.g., LANDIS) and wildlife population fitness
parameters (e.g., RAMAS)

Larson et al. 2003,
2004, Shifley et al. 2006,
Dijak et al. 2007,
Rittenhouse et al. 2007

Land Use Evolution
and Impact
Assessment Model
(LEAM)

The LEAM model determines the location of habitat
patches likely to sustain populations of species of
interest, estimates population size, and assesses the
degree of connectivity and potential gene flow between
patches. When applied to a changing landscape, the
results of the model indicate changes in species-
specific patch connectivity and determine the impact of
land-use change on population isolation and habitat
fragmentation.

Aurambout et al. 2005

Landscape Evaluation
Effects of Management
Effects on Timber and
Habitat (LEEMATH)

LEEMATH is a spatially and temporally explicit tool that
integrates habitat attributes, habitat suitability, stand
growth, spatial habitat attributes, and landscape
characteristics. Model input is a management regime
defined by a timber harvest schedule, a silvicultural
treatment plan, the spatial distribution of stands, and
the target wildlife species. Outputs include timber
growth and harvest (e.g., total basal area), habitat
attributes (e.g., mean habitat patch size) and habitat
suitability (e.g., total habitat area).

Li et al. 2000

Landscape
Management System
(LMS)

LMS is a computerized system that integrates
landscape-level spatial information, stand-level
inventory data, and distance-independent individual
tree growth models to project changes through time
in tree growth and snag decay across forested
landscapes. Management scenarios are evaluated in
terms of wildlife habitat and timber revenue.

Marzluff et al. 2002,
QOliva et al. (this volume)

Program to Assist in
Tracking Critical
Habitat (PATCH)

PATCH s a spatially explicit, individual-based, life history
simulator designed to project populations of temitonial
terrestrial vertebrate species through time. inputs
include habitat maps, specifications for habitat use
(temitory size and habitat affinity), vital rates (survival and
reproduction), and descriptions of species' movement
behavior. Qutputs include spatial estimates of habitat
occupancy rate and source-sink characteristics.

Schumaker 1998,
Schumaker et al. 2004

continues
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Table 10-2 Summary of 40 Habitat-Relationships Modeling Frameworks cont...

Framework Description Primary References
Pattern Recognition PATREC is a modeling framework that relies Williams et al. 1977,
(PATREC) on Bayesian statistical inference, which requires Grubb 1988

that habitat conditions be expressed as

conditional probabilities (i.e., 1 or more of the
habitat conditions under consideration is much more
probable [occurs more frequently] than the others).
Expected densities of animals can be computed
based on knowledge of densities and habitat

conditions.
Point Specific PSE estimates quality of habitat from single Mead et al. 1981,
Estimator (PSE) variable databases (e.g., vegetation maps) in Lyon et al. 1987

terms of interspersion, juxtaposition, and spatial
diversity. Input requirements include cover type

and values of cover types to wildlife species.
Outputs for raster-based maps are possible through
application of the spatial diversity index values to

each grid cell. )
RAMAS Landscape RAMAS Landscape integrates the LANDIS Akgakaya et al. 2004}\
landscape model with the RAMAS GIS 2005 \

habitat-based metapopulation model to provide
predictions about the viability, recovery, and
growth of species based on predicted changes in

landscapes.
Spatially Explicit SESI models are similar to HS! models in Curnutt 2000
Species Index (SESI) that population response is predicted by a

set of habitat relationships and in that habitat quality
is quantified by an index value. However, SESI
models can focus either on one part of a life cycle,
such as breeding or foraging, or whole life cycles.
They incorporate temporal changes in the
environment, can be used to model the responses of
any species in the system, and provide a landscape
index map rather than just a single index or set

of indices.

SIMFOR SIMFOR evaluates the response of forest vegetation Wells et al. 1999, Wells
to management or natural disturbances, and and May 2002, Seely
calculates potential landscape and wildlife habitat et al. 2004

conditions. By matching wildlife species requirements
with projected habitat attributes, SIMFOR estimates
species-specific habitat suitability. Simple landscape
metrics based on seral stage, patch size, and edge
characteristics are also calculated.

continues
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Table 10-2 Summary of 40 Habitat-Relationships Modeling Frameworks cont...

Framework

Description

Primary References

Spatially Neutral
Bayesian Model!
(SNBM)

The simplest potential distribution of a wildlife
species is a random distribution where all sites have
equal probabilities. A more ecologically appropriate
potential spatial distribution accounts for
environmental variation. This expected distribution is
called a spatially neutral model, because it is
generated without hypothesizing spatial factors that
regulate the distribution of resources or organisms.

Milne et al. 1989

Spatial Optimization

Spatial optimization is not a habitat modeling
framework, per se, but provides a framework within
which the results of habitat modeling may be applied
to obtain habitat configurations to best meet specific
management objectives. Optimization of landscapes
aims to identify landscape and land-use patterns,
which support certain ecosystem functions in an
optimal way. The chosen performance criteria are
based on the ecosystem functions considered for
optimization.

Hof and Bevers 1998

Species-area
Relationship
(SPPAREA)

Species-area curves are computed as S = CAZ,
where S = number of species, ¢ = a constant that
varies with taxon and geographic region, A = area,
and z = a constant measuring the slope of the line
relating S and A. Species-habitat area relationships
were first explored on islands, but have been
extended to a wide variety of habitats.

Schroeder 1996

Species-Habitat
Matrices (SHM)

Species-habitat matrices are databases used to
predict the presence or relative abundance of
species within geographic areas or within serat
stages of vegetation types. More detailed predictions
include ratings for life requisites of species such as
reproduction, feeding, and cover. Most species-
habitat matrices rely on previously published
information and expert opinion as the basis for their
entries.

Thomas 1979, Hoover
and Willis 1984, DeGraaf
et al. 1992, Scott et al.
1993, Karl et al. 2000

Species Sorting
Algorithm (SSA)

SSA derives data from a spatial landscape analysis
and from published species life-histories to evaluate
the full suite of species that could occur on a
landscape. The SSA identifies and concentrates
attention on species that have, due to ecological
factors such as habitat specificity or negative
response to management activities, the potential to
be affected by proposed land management.

Reed et al. 2001,
Higdon et al. 2005,
2006

continues
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Table 10-2 Summary of 40 Habitat-Relationships Modeling Frameworks cont...

Framework Description Primary References

Wildlife Habitat Quality WHQ generates numerical ratings of habitat quality Roller 1978
(WHQ) based on an analysis of digital habitat maps and

associated information. Information on vegetation

and terrain (as they affect availability of food and

cover), habitat interspersion, and habitat

juxtaposition are integrated to provide a score from

0 to 100 to quantify habitat quality.
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FIG. 10-1

Proportion of wildlife habitat-relationships modeling frameworks developed by decade

(A) suited for a wide range of species in a wide range of environments: (B) where vegetation
was applied as habitat variables to assess wildlife-habitat relationships; (C) that are standalone
frameworks, not a component of a landscape modeling system; and (D) with input
requirements that are readily available in agency inventories.

attributes as the basis for evaluating wildlife-habitat relationships within species-
habitat matrices.

Since development of wildlife-habitat relationship models began, most frame-
works have defined habitat relationships for a wide range of species in a wide
range of environments (Fig. 10-1A). During the 1990s, more (0.33) frameworks
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Proportion of wildlife habitat-relationships modeling frameworks developed by decade that
(A) examine habitat relationships at multiple scales; (B) provide linkage between scales if
multiscaled; (C) are spatially explicit; and (D) use population demographics or surrogates of
population demographics to model habitat relationships.

applied vegetation attributes within the context of species-habitat matrices than
other decades (Fig. 10-1B). The proportion of frameworks that are not compo-
nents of larger landscape modeling systems (Fig. 10-1C) and that use input data
that are typically readily available in natural resource agency inventories declined
from 1980 through 2006 (Fig. 10-1D). The proportion of frameworks that exam-
ine habitat relationships at multiple scales (Fig. 10-2A), link scales when multi-
scaled (Fig. 10-2B), and that are spatially explicit (Fig. 10-2C) increased from
the 1980s through 2006. The proportion of frameworks that use population
demographics or surrogates generally increased from the 1980s through 2006
(Fig. 10-2D). Over time, the proportion of frameworks where at least one species
model based on that framework has been validated through comparing predic-
tions to observed data, reserving data to use in validation, or other techniques
never exceeded 0.58 (Fig. 10-3A), but the proportion of frameworks that have
received scientific credibility through peer-reviewed publication or application
of results or other mechanisms has consistently remained >0.83 (Fig. 10-3B).
Only two (0.05) frameworks (ALMaSS and LEEMATH) were limited to a single
environment (Table 10-3). Of the total, three (0.08) frameworks were aspatial
(Expert Systems, HABSIM, CompPATS; Table 10-3). Four (0.10; ANN, CompPATS,
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Proportion of wildlife habitat-relationships modeling frameworks developed by decade

(A) where at least one model developed within that framework has been validated with field
data; and (B) that have attained scientific credibility through publication of results, application
of results, or other mechanisms to suggest acceptance by an array of professionals.

SPPAREA, and WHQ) of the reviewed frameworks considered habitat relation-
ships at a single spatial scale (Table 10-3). Five of the 36 (0.14) multiscale frame-
works (BBN, HABIT@, HCI, EMDS, and PATCH) provided linkage between scales
(Table 10-3). Nineteen (0.48) frameworks incorporated population demographics
or surrogates into modeling. Twenty-seven (0.68) frameworks have the ability to
incorporate spatially explicit characteristics (Table 10-3).

Description of Habitat-Relationships Modeling
Frameworks

Total heterogeneity between CompPATS, HABSCAPES, and other frameworks
was R? >0.60, indicating these two frameworks were different from other
frameworks based on our criteria so they were not included in any clusters
(Fig. 10-4). Heterogeneity was lowest between frameworks for the cluster
formed by HEI and HBSV (R* = 1.000) and highest (R? = 0.000) between Comp-
PATS, HABSCAPES, and all clusters (Fig. 10-4). Thirty-eight frameworks were
apportioned within 7 clusters, each cluster containing an average of 5.4 (range
= 2-10) frameworks. Mean dissimilarity between all modeling frameworks was
0.352 (range: 0.034-0.753), indicating average heterogeneity was low-to-moder-
ate, yet the range in heterogeneity between frameworks was broad.

Cluster 1.—Cluster 1 consisted of HSI and nine other frameworks ®R*=0.739)
that rely on emerging analysis techniques (ANN, CWHR, HEI, HBSV, PATCH,
and PATREC) and/or evaluate wildlife-habitat relationships within the context of
species-habitat matrices (Arc-Habcap, BIRDHAB, CWHR, PATCH, and SHM;
Fig. 10-4; Table 10-3). Mean dissimilarity between all frameworks was 0.241
(range: 0.071-0.429), indicating that frameworks within the cluster were rather
similar in their characteristic abilities (i.e., how they fit our evaluation criteria).
Input for all frameworks in Cluster 1 was readily available in natural resource
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FIG. 10-4

Hierarchical tree diagram depicting heterogeneity between clusters of 40 wildlife habitat-

relationships modeling frameworks evaluated in 2007. \
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1
agency inventories. Output was easy to define and measure for all frameworks in
Cluster 1 (Table 10-3). Species-specific models for each framework in Cluster 1
have been validated; each framework was suited for 2 wide range of species in a
wide range of environments and has attained scientific credibility (Table 10-3).
Among the three largest clusters, Cluster 1 was highest (0.70) for frameworks that
relied on population demographics or surrogates. All frameworks in Cluster 1
were moderate or easy to parameterize, run, and understand the output and
0.90 were moderate or easily transparent. With the exception of Arc-Habcap, all
frameworks in Cluster 1 had sufficient documentation to clearly understand the
framework (Table 10-3).

Cluster 2.—Cluster 2 included all frameworks (R2 = 0.703), with the excep-
tion of CompPATS, that were components of larger landscape modeling systems
(ALCES, BOREAL, EMDS, HCI, LEAM, LEEMATH, LMS, SESI, and SIMFOR;
Table 10-3; Fig. 10-4). Mean dissimilarity between all nine frameworks was
0.302 (range: 0.119-0.500), indicating that most frameworks within the cluster
were similar in their characteristic abilities. All the frameworks in Cluster 2 have
received scientific credibility through publication, and all but BOREAL were spa-
tially explicit (Table 10-3). However, data inputs were not readily available in
agency inventories for three of ninc of the frameworks; species-specific models
for 4 of 9 frameworks have not been validated; each framework is moderate or
difficult to parameterize, run, and understand the output; and transparency in
model structure was moderate or difficult for every framework (Table 10-3).
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Documentation for four frameworks was limited or marginal. None of the frame-
works in Cluster 2 used population demographics, although LEAM used surro-
gates of population demographics (Table 10-3).

Cluster 3.—Cluster 3 consisted of 10 frameworks (EAM, expert systems,
HABSIM, HQ, Landscape HSI, RAMAS Landscape, SNBM, spatial optimization,
SPPAREA, and WHQ; Fig. 10-4; R? = 0.887). Mean dissimilarity between all fra-
meworks within the cluster was 0.239 (range: 0.071-0.429), indicating that
most frameworks within the cluster were similar in their characteristic abilities.
Cluster 3 was characterized by frameworks that were generally well documen-
ted; have attained scientific credibility; used readily accessible input data; had
output that is well defined and measurable; but tended to be difficult to run,
paramcterize, and understand the output (Table 10-3). Half of these frameworks
cmphasized population demographics or surrogates; the structure of only two
frameworks in Cluster 3 was easily transparent; 8 of 10 frameworks do not have
species-specific models that have been validated; two frameworks (SPPAREA
and WHQ) considered habitat relationships at a single spatial scale; and all
frameworks, except cxpert systems and HABSIM, were spatially explicit. In addi-
tion, all frameworks were very well suited to examine the scales they were
designed for (Table 10-3).

Cluster 4.—Cluster 4 included three frameworks (ArcHSI, HQI, and PSE;
Fig. 10-4) that had the lowest within-cluster variability (R2 = 0.887) of all clus-
ters. Mcan dissimilarity between all frameworks within Cluster 4 was 0.256
(range: 0.154-0.308), further indicating that frameworks within this cluster
were similar in their characteristic abilities. All the frameworks in Cluster 4 used
readily available input data, had sufficient documentation to understand the
framework, and were moderately well suited to examine the multiple scales
they were designed to evaluate (Table 10-3). None of the frameworks in Cluster
4 used population demographics or surrogates or have becn validated through
species-specific models. These frameworks are mixed (difficult, moderate, and
casy; Table 10-3) relative to our assessment of practitioners being able to mea-
sure model output and understand framework transparency.

Cluster 5.—Cluster 5 consisted of two spatially explicit frameworks (BBN,
HABIT@), which were both linked to the multiple scales they were very well
suited to examine (Fig. 10-4). Within-cluster heterogeneity was R® = 0.791 and
within-cluster dissimilarity was 0.364. Both frameworks had sufficicnt documen-
. tation; were casy to parameterize, run, and provided understandable output;
used’ surrogates of population demographics; and were ranked moderate in
transparency (Table 10-3). BBN, but not HABIT@, attained modecl validation
and scientific credibility (Table 10-3).

Cluster 6.—Cluster 6 included two scientifically credible, spatial frameworks
(BEST and FORHAB; Fig. 10-4) that were moderately well suited for the multiple
scales they were designed to examine (Table 10-3). Within-cluster heterogeneity
was R? = 0.778. Dissimilarity between frameworks was 0.429, indicating that
the frameworks forming this cluster were relatively more dissimilar than
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frameworks in the other clusters. Both frameworks incorporated surrogates of
population demographics; were capable of modeling a wide range of species
in a wide range of environments; but did not have examples of validated modecls
developed within the frameworks. However, other characteristic abilities based
on rating criteria differed. BEST used readily available data from natural resource
agency inventorics and incorporated vegetation and its attributes within a
species-habitat matrix.

Cluster 7.—Cluster 7 included two spatially explicit, credible frameworks
(ALMaSS and SSA; Fig. 10-4), which specifically relied on population demo-
graphics to evaluate wildlife-habitat relationships (Table 10-3). Within-cluster
heterogeneity was highest in this cluster when compared among all seven clus-
ters (R? = 0.686), and within-cluster dissimilarity (0.400) was second highest
among clusters. Input data for both frameworks were not readily available in
natural resource agency inventories, and neither framework has attained valida-
tion through a species-specific model. ALMaSS was suited for a single environ-
ment (i.e., temperate Europe); was moderately transparent in understanding
model structurc; was very well suited to cxamine the scales for which it was
designed; was difficult to run, parameterize, and understand its output; but
has detailed documentation (Table 10-3). Although marginally well documented,
the structure of SSA was easily transparent; however, it was rated moderate for

all other ordinal-scale criteria (Table 10-3). ‘-\

\

\

DISCUSSION

Development of model components through the past three decades has coin-
cided with technological advancements including landscape modeling appli-
cations, statistical techniques, and computing capabilities (Capen 1981, Scott
et al. 2002, Stauffer 2002). Developments in ecological theory have also influ-
enced habitat-relationships modeling. For instance, newer frameworks often
consider wildlife habitat relationships from a landscape viewpoint by including
fragmentation or patch size cffects on wildlife populations (e.g., LEAM [Auramb-
out et al. 2005]), grouping terrestrial species into guilds based on expected
responses to different amounts and distributions of habitat across landscapes
(HABSCAPES [Mellen ct al. 2001)), integrating landscape and metapopulation
modecls to predict demographic responses based on predicted landscape changes
(RAMAS Landscape [Akgakaya et al. 2004, 2005]); and predicting the effects of
matrix habitats, including edge responses of species, on species abundances in
habitat patches (EAM [Sisk ct al. 1997, Brand et al. 2006)).

Habitat suitability under HEP was defined as a 0-1 index of habitat quality
ranging from unsuitable to optimal (U.S. Fish and Wildlife Service 1981). Many
newer modeling frameworks (e.g., ArcHSI [Juntti and Rumble 2006], HABIT@
[McGarigal and Compton 2003), HCI [McComb ct al. 2002], HQ [Roy et al.
1995], HQI [Rickel 1997], and Landscape HSI [Larson et al. 2003, 2004; Dijak
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et al. 2007; Rittenhouse et al. 2007]) follow this convention by defining habitat
capability or suitability in 0-1 index form. This approach provides an casily
interpretable basis to compare current habitat conditions or suitability of sites
to optimal habitat conditions at sites for a given species.

Habitat Evaluation Procedures suggested that population variables should
not usually be included in a habitat model because they are costly to obtain, dif-
ficult to predict, and often not indicative of habitat suitability (U.S. Fish and
Wildlife Service 1981). Even though including population variables in habitat-
relationships modeling may have been avoided in the past, we considered this
criterion in our evaluations of modeling frameworks because the valuc of habi-
tats to wildlife populations is better understood when population parameters
can be linked with habitat conditions (Van Horne 1983). The results of habi-
tat-relationships modeling are increasingly reported within a population con-
text, including available breeding bird habitat (Smith et al. 1981), habitat
effectiveness (Merrill et al. 1999), potential population density (Mattson and
Merrill 2004), presence or relative abundance (Scott et al. 1993), and viable
home ranges (Roloff and Haufler 1997).

Since their inception, wildlife habitat-relationships modeling frameworks
have incorporated additional characteristic abilities such as application at multi-
ple scales, linking scales when multi scaled, and incorporation of population
demographics or surrogates. Qur evaluation provides practitioners with informa-
tion that will be uscful in sclecting frameworks to meet specific needs. In the fol-
lowing sections, we examine scenarios in which frameworks in each cluster
have potential application. We also provide a key to assist practitioners in select-
ing the most appropriate framework for potential applications (Table 10-4).

Potential Applications

Cluster 1.—Frameworks forming Cluster 1 provide many characteristics that
practitioners may find desirable including data inputs that are readily available,
field validation, scientific credibility, transparency, and the added benefit of
using population demographics or surrogates to model habitat relationships.
Although Cluster 1 included frameworks that evaliate wildlife habitat quality
within the simplistic context of species-habitat matrices, as compared to frame-
works that rely on more complex emerging analysis techniques, the characteris-
tic abilitics of frameworks using these approaches were similar. A practical
application of species-habitat matrix framecworks is their use when conducting
environmental impact assessments, where the quality of habitat for various
‘species within impacted or nonimpacted habitats or habitat structural stages is
of more importance than predicting occurrence or abundance (Kilgo et al.
2002). Although they provide interpretable output, frameworks that use
emerging analysis techniques may require technical support to parameterize
and interpret model output. For instance, to modecl habitat relationships, ANN
uses artificial neural networks (Ozesmi and Ozesmi 1999, Lusk et al. 2002,
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Table 10-4 Key to Assist Practitioners in Selecting the Most Appropriate Framework for Potential i
Applications from Among 40 Identified Wildlife Habitat-Relationships Modeling Frameworks {
1. Large landscape modeling system is Not deSIred ..............coooooooooo oo 2
1.——_ Large?nd;;pe modeling system is d;d/ o

A. Framework with scientific credibility is desited ... Cluster 2

B.— Fram—ew;)ﬁitEentific. ;ﬁim is not Rortant.f...: .................................... COMPA?
2. Input data must be readily available from agency databases ... 3
; o —Not critical that inb@ata be readily availableTom agency databases...i ........................... 5
3. A. Framework where output from 1 model has been validated is desired ................ .. Cluster 1

; Framework —vrere output from 1 model has not been validated is acceptable.................... 4 i
4. Frameworks are very well suited for the scales they are designed for........................... Cluster 3 !
4, Frameworks are moderately well suited for the scales they are designed for................ Cluster 4
5. The use of population demographics or surrogates is not an objective................... HABSCAPES
5. Framework which uses population demographics or surrogates is desired................ccc.ooco 6
6. A. The spatial appilication of the framework simply uses geographical data................. Clusté( 6

B Spatially explicit applications by the framework are desired ... \7 .
7. A. Framewcrk that uses surrogates of population demographics is desired ................. Cluster 5

B. Framework that uses population demographics is desired...............cocoevreeecri i, Cluster 7

Ozesmi et al. 2006); PATREC uscs Bayesian probabilitics (Williams et al. 1977,
Grubb 1988); CWHR provides an option to apply fuzzy logic to calculate habitat |
suitability indices (California Department of Fish and Game 2005); and HBSV is a :
habitat-based approach to population viability modeling (Roloff and Haufler
1997, 2002). The original HSI framework provides advantages in ease of inter- |
* pretability and has many completed models that have been validated. In addi- l
tion, tcchniques are available to evaluate the reliability in HSI model inputs,
providing a means to infer differences between HSI scores (Bender et al.
1996, Burgman ct al. 2001). Those wishing to select a framework that uses sur-
rogates or population demographics to link with habitat conditions should also
consider Cluster 1. In comparison, frameworks in Cluster 4 do not incorporate a
habitat-population linkage, and fewer frameworks in Clusters 2 and 3 provide
these options as compared to Cluster 1.
Cluster 2.—All the modeling frameworks comprising Cluster 2 are scientifi-
cally credible components of larger landscape modeling systems. Thus, practi-
tioncrs may want to consider selecting these frameworks only if they are
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going to be involved in a comprehensive assessment of a large landscape and
therefore are willing to devote the effort necessary to parameterize and run
the more comprehensive landscape model. It may be advisable for practitioners
to establish a dialogue with the developers of these systems prior to initiating
modeling; without establishing such dialogue, it would be difficult for practi-
tioners to independently implement these frameworks. LEEMATH was devel-
oped to evaluate alternative management strategies for multiple species in
industrial forest landscapes in the southeastern United States (Li et al. 2000):
however, all other frameworks in Cluster 2 are suitable for a wide range of spe-
cies in a wide range of landscapes. Major weaknesses of Cluster 2 are that only
LEAM uses surrogates of population demographics, and without consultation
with framework developers, transparency of the structure of frameworks is
moderate at best. An advantage of several frameworks in Cluster 2 is that web-
sites have been provided that detail their application (i.e., ALCES, EMDS, HCI
Ivia CLAMS; Spies et al. 2002], LEAM, LMS, SESI, SIMFOR). Limitations associated
with availability of input data, documentation, model parameterization, and
transparency for frameworks in this cluster are largely related to the fact that
these frameworks are components of larger landscape modeling systems.
However, the value of understanding the influences of landscape processes
and management activities such as logging on wildlife habitat quality makes con-
sideration of these frameworks advantageous over those in other clusters.

Cluster 3.—Each framework in Cluster 3 was scientifically credible and used
readily available input data, but only EAM and SNBM had models that have been
field verified. Frameworks forming Cluster 3 approach habitat modeling under
the context of a modeling shell (expert systems and spatial optimization), a
GlS-based modeling system (Landscape HSI, RAMAS Landscape), or a modeling
framework that uses a diversity of techniques to model habitat relationships.
For instance, EAM utilizes a variety of spatially explicit analyses to predict the
effects of matrix habitats on species abundances in habitat patches (Sisk et al.
1997, Brand et al. 2006), and SNBM generates expected distributions for wildlife
species. without hypothesizing spatial factors that regulate the distribution of
resources or organisms (Milne et al. 1989). Spatial optimization allows one to
apply the results of habitat modeling to optimize habitat configurations. How-
ever, implementation of habitat modeling with spatial optimization requires
strong quantitative skills. RAMAS Landscapce (Akcakaya et al. 2004, 2005;
Bekessy et al., this volume) provides practitioncrs with a useful website and inte-
-grates a landscape model (LANDIS; He et al. 1999; He, this volume) with a meta-
population model (RAMAS GIS; Akgakaya 1998). Expert systems offer modelers
the ability to structure models with expert opinion and quantitative data, often
within the structure of a modeling shell (e.g., Sodja et al. 2002). A major advan-
tage of frameworks in Cluster 3 compared to other clusters is the flexibility in
modeling through modeling shells, GIS-based modeling systems, and other inno-
. vative techniques. A disadvantage of several frameworks in the cluster (i.e., EAM,
HABSIM, HQ, SNBM, and WHQ) is marginal documentation. *
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Cluster 4. —Major strengths of frameworks in Cluster 4 are input data that
are readily available in agency databases, abilities to evaluate spatial or spatially
explicit data, and sufficient documentation to clearly understand cach model-
ing framework. A major advantage of frameworks in Cluster 4 is their simple
approach to evaluate habitat quality. ArcHSI and HQI are more sophisticated
versions of the original HSI framework, are easy to parameterize and under-
stand model output, and were developed for use within a GIS. PSE uses simple
landscape metrics to evaluate habitat quality with single variable databases
(Mead et al. 1981, Lyon et al. 1987). Although frameworks in Cluster 4 use
simple approaches to model habitat quality, they are limited by their inability
to link habitats with populations, and only PSE has achicved scientific
credibility.

Cluster 5.—Cluster 5 is the only cluster where all frameworks link multiple
scales. In addition, unlike the linked multiscale frameworks in Cluster 3,
HABIT@ and BBN use surrogates of population demographics in assessing wild-
life habitat quality. BBN provides practitioners with endless opportunities to
evaluate habitat quality through depicting probabilistic relations among vari-
ables (Marcot et al. 2001, Raphael et al. 2001, Marcot 2006). HABIT@ represents
one of the most innovative frameworks because it evaluates linked, spatially
explicit habitat attributes at local, home range, and population scales (Mchrlgdl
and Compton 2003).

Cluster 6.—Cluster 6 is characterized by spatial frameworks that predict
changes in habitats. FORHAB predicts changes in bird breeding habitats (Smith
et al. 1981), while BEST is based on a species-habitat matrix that provides pre-
dictions of where land uses may conflict with the conservation of biotic ele-
ments of the landscape (Crist et al. 2000). In addition to predictive abilitics,
other strengths of frameworks in Cluster 6 include scientific credibility and link-
age between habitats and populations. Limitations of frameworks in Cluster 6
include limited or marginal documentation, no model validation, and models
where functional transparency is marginal or difficult to understand.

Cluster 7.—Frameworks in Cluster 7 provide predictive tools that are useful
in assessing impacts of land management activities on species and habitats.
These predictive frameworks are stronger than those in Cluster 6 because they
are spatially explicit and directly use population demographics to evaluate habi-
tat quality. ALMaSS addresses policy questions regarding cffects of changing
landscape or management scenario on selected wildlife species; however, it
was specifically developed to model wildlife habitats in temperatec Europe
(Topping et al. 2003) and may have limited application elsewhere. SSA focuses
on specics that have the potential to be adversely affected by proposed land
management due to specific habitat requirements or characteristic responses
to management activities (Reed et al. 2001; Higdon et al. 2005, 2006). Weak-
nesses of frameworks in Cluster 7 include input data are not readily available
in agency databases, models have not been validated, and frameworks are
difficult or marginal to parameterize and understand the output.
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FUTURE DIRECTIONS

Many recently developed modeling frameworks incorporate linkages between
habitats and populations at multiple scales and link those scales, while incorpor-
ating spatially explicit data. We suggest that developers of new frameworks con-
sider incorporating thesc components because the ecological concepts
addressed often provide a better understanding of wildlife-habitat relationships
and management implications. An emerging trend in wildlife habitat-relation-
ships modeling is for frameworks to be components of larger landscape modeling
systems. Although we view this trend as potentially problematic for practitioners
not involved in comprehensive landscape assessments, many contemporary
frameworks still allow independent applications.

Habitat suitability index models were originally developed to assist in quan-
tifying and evaluating the effects of management actions on wildlife populations
and their habitats (U.S. Fish and Wildlife Service 1981). Since the development
of HEP, many other habitat-relationships modeling frameworks have also focused
on evaluating land management actions on wildlife habitats. For instance, some
frameworks have been developed to evaluate prescriptions for harvesting tim-
ber on wildlife habitats (e.g., BOREAL [Puttock et al. 1998], LEEMATH [Li
ct al. 20001]), whereas others consider influences of a variety of perturbations
and ecological and industrial issues in conjunction with wildlife habitats (e.g.,
ALCES [ALCES 2005], CompPATS [Ouachita National Forest 1988}, LMS [Mar-
zluff et al. 2002], SESI [Curnutt et al. 2000], SIMFOR [Seely et al. 2004]). Future
frameworks that focus on evaluations of management practices or perturbations
on wildlife habitats will be more widely applied if they address a variety of man-
agement questions (e.g., energy development, transportation corridors).

A current trend in framework development is to incorporate spatially
explicit procedures when evaluating wildlife-habitat relationships. We suggest
all future frameworks for wildlife conservation in large landscapes be able to
evaluate habitat conditions under explicit spatial contexts. Spatially explicit hab-
itat modeling frameworks provide practitioners with the ability to evaluate
habitat in relation to conditions in adjoining parcels, according to configurations
of resources, and in relation to habitat features such as roads that may influence
animal movements or other behaviors (McGarigal and Compton 2003).

Emerging frameworks that show promise for describing wildlife-habitat rela-
tionships and that may be considered by developers include Petri nets, which
are mathematical tools that are useful for modeling concurrent, distributed,
asynchronous behavior in a system (e.g., Gronewold and Sonnenschein 1998).
Also, qualitative modeling (e.g., loop analysis [Justus 2006]) may be more prac-
tical as a framework than quantitative modeling because qualitative models
require fewer resources and less modeling experience.

Developers of frameworks have consistently attained scientific credibility

" through published manuscripts describing the development or applications of
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models developed within their frameworks, but a major weakness for many fra-
meworks continues to be a lack of validation (Raphael and Marcot 1986, Block
ct al. 1994, Roloff and Kernohan 1999). Model validation is critical so that mod-
els developed within any framework can be used with confidence (Shifley et al.,
this volume). Therefore, we recomtiicnd that models be validated through inde-
pendent field study or by reserving some data used in model development. Of
particular interest is the need to validate frameworks. Although some frame-
works have been validated (e.g., BIRDHAB [Kilgo et al. 2002], CWHR [Block
et al. 1994], EAM ([Sisk et al. 1997], SHM (Karl et al. 2000)), validation has typi-
cally been applied to individual species models developed within the structure
of frameworks. Both frameworks and models need validation; a framework may
work well conceptually, while a specific habitat-relationships model developed
within the framework may not. Although we focused on evaluating whether
at least one species-specific model within a framework had been validated, we
suggest that the need to validate frameworks is of even greater importance.

We suggest developers of future frameworks carefully consider the capability
of practitioners to develop and apply models. Specifically, developers of new fra-
meworks should consider using input data that are readily available in agency
inventorics, and develop frameworks with transparent structure and adequate
documentatijon so that practitioners may clearly understand and apply the frame-
work. We remind practitioners that if available data are poor quality or fail to z\l\dc-
quately describe variables critical to the habitat requirements of a species, then
only poor quality outputs will result. Thus, obtaining quality input data is para-
mount in modeling activities. A particularly important consideration for new fra-
meworks is ensuring the availability of documentation, either online or printed
user’s manuals that clearly describe application of models developed within the
framework, present examples of model applications, offer other resources such
as descriptions of input and output data, document assumptions and functional
forms (i.e., equations), and provide schematic descriptions of framework struc-
tures to enhance understanding of the model applications by practitioners.

As model frameworks become more sophisticated, users will increasingly
face the issue of parameterizing complex models for species whose ecological
relationships may not be well understood. For instance, the current understan-
ding of spatial relationships and even basic habitat associations is poor for many
vertebrates (e.g., U.S. Forest Service 2000). Therefore, it will be important to
retain the ability within potentially complicated frameworks to develop
simple models that reflect the level of ecological understanding for particular
species.

SUMMARY

Wildlife habitat-relationships models were first developed in the mid-1970s
to provide practitioners with tools to evaluate habitat quality. We identified and



Summary

described the structure, uses, output, and operation of major habitat-relationships
modeling frameworks. We defined frameworks as conceptual modeling struc-
tures such as modeling shells and gencral modeling approaches within
which models are constructed that are similar in purpose and function.
Frameworks provide the foundation for building models for a wide array of
animals in almost any environmental setting. We also provided a descriptive
analysis of frameworks to assist practitioners in selecting approaches that fit
specific operational objectives. We identified 40 frameworks (13 through the
1980s, 12 in the 1990s, and, 15 since 2000) and grouped them according to
10 nominal- and 5 ordinal-scale criteria. The proportion of frameworks that
are not components of larger landscape modeling systems using input data
readily available in natural resource agency inventories declined from 1980
through 2006. The proportion of frameworks that examine habitat relation-
ships at multiple scales, link scales when multiscaled, and that are spatially
explicit increased from the 1980s through 2006. The proportion of frame-
works that have received scientific credibility through publication or applica-
tion of results or other mechanisms has remained above 0.83, but the
proportion of frameworks where output from at least one model developed
within a framework has been validated with field data never exceeded 0.58.
We used agglomerative hierarchical cluster methods to identify groupings of
habitat-relationships modeling frameworks based on dissimilarity distance
between each framework according to criteria ratings. CompPATS and HABS-
CAPES did not meet our cluster grouping criteria, but the remaining 38 fra-
meworks were apportioned among seven clusters, each containing an
average of 5.4 (range = 2-10) frameworks. Each cluster was characterized
by specific strengths and limitations that practitioners should assess prior
to selecting a framework that best meets their modeling objectives. Cluster
1 included HSI and nine other frameworks that were based on species-habi-
tat matrices or newly emerging analysis techniques. Cluster 2 was character-
ized by frameworks that were components of larger landscape modeling
systems. Cluster 3 approached habitat modeling through modeling shells,
GIS-based modeling systems, or a diversity of other techniques to model hab-
itat relationships. Frameworks in Cluster 4 use simple approaches to evaluate
habitat quality, often developed for use within a GIS. Both frameworks in
Cluster 5 link multiple-scales to evaluate habitat quality. Frameworks in Clus-
ter 6 predict changes in habitats. Frameworks in Cluster 7 provide predictive
tools that are useful in assessing impacts of land management activities on
species and habitats. Our evaluation provides conceptual information for
practitioners evaluating how well wildlife habitat-relationships frameworks
may achieve modeling objectives. To assist developers of future wildlife hab-
itat-relationships modeling frameworks, we provided insights to the develop-
ment of rigorous yet practical frameworks that follow current trends in
wildlife-habitat relationships modeling and suggestions to overcome limita-
tions in existing frameworks.
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